Maybaygiare.org

Blog Network

1/infinity és 1/0

Szia Evan,

az a megfigyelésed, hogy

mivel az n értéke növekszik, minél közelebb kerül az 1/n nullához.

helyes és nagyon fontos ötlet, de nem szeretem az 1/infinity-t írni. Az aritmetikai műveletek a számokra vonatkoznak, a végtelenség pedig nem szám, ezért nem tetszik az ötlet, hogy megpróbáljak osztani valamivel, ami nem szám. Ennek ellenére szeretnék egy matematikusabb módszert mondani

mivel az n értéke növekszik, minél közelebb kerül az 1/n nullához.

ehhez a matematikusok használják a határ ötletét, amely a számítás alapvető fogalma, és azt mondják, hogy az 1/n határérték, amikor n közeledik a végtelenhez, nulla, és írja ezt az állítást

Ha ugyanazt az ötletet alkalmazza az 1/0 kiértékelésére, akkor azt kérdezi

mivel az n értéke nullához közelít, mi történik az 1/n értékkel?

n-re pozitív számként gondolok. Ha megpróbálod ezt, rájössz, hogy amint n közelít a nullához, az 1/n egyre nagyobb lesz, és nem közelít meg semmilyen véges értéket, így azt mondhatom, hogy

az 1/n határa, amikor n megközelíti a nullát, végtelen.

vagy azt szeretném mondani, hogy

az 1/n határérték, amikor n megközelíti a nullát, nem létezik.

mivel n megközelíti a nullát, az 1/n csak nem közelít meg semmilyen numerikus értéket.

az előző kérdésre adott válaszban találhat egy másik megközelítést az 1/0 kiértékelésére.

Penny

Vélemény, hozzászólás?

Az e-mail-címet nem tesszük közzé.